Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Viruses ; 14(9)2022 09 17.
Article in English | MEDLINE | ID: covidwho-2043977

ABSTRACT

Rapid and accurate diagnosis of SARS-CoV-2 infection is essential for the management of the COVID-19 outbreak. RT-LAMP LoopDeetect COVID-19 (LoopDeescience, France) is a rapid molecular diagnostic tool which operates with the LoopDeelab (LoopDeescience, France) device. RAPID COVID is a prospective double-blind research protocol which was conducted to evaluate the concordance between Loopdeetect COVID-19 and RT-PCR Allplex 2019 n-Cov (Seegene, Korea). Between 11 May 2020 and 14 June 2021, a total of 1122 nasopharyngeal swab specimens were collected, of which 741 were finally analysed. There were 32 "positive" and "indeterminate" RT-PCR results. The intrinsic performances of Loopdeetect COVID-19 are equivalent to other commercial RT-LAMP PCR COVID-19 kits, with a sensitivity and specificity of 69.23% [CI 95%: 48.21-85.67] and 100% [CI 95%: 99.58-100.00], respectively. To the best of our knowledge, LoopDeelab is the only LAMP PCR diagnostic device allowing such a fast and reliable analysis with low-cost equipment; this makes it a new and innovative technology, designed for field use. This device being portable, the development of other detection kits will be useful for the management of epidemics with a high attack rate and would facilitate the rapid application of health measures.


Subject(s)
COVID-19 , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Humans , Nucleic Acid Amplification Techniques/methods , Pandemics , Prospective Studies , SARS-CoV-2/genetics , Sensitivity and Specificity
2.
J Med Virol ; 94(5): 1998-2007, 2022 05.
Article in English | MEDLINE | ID: covidwho-1777578

ABSTRACT

Coronavirus disease 2019 or COVID-19 caused by novel coronavirus/severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2 or 2019-nCoV) is an ongoing pandemic that has emerging global effects and requires rapid and reliable diagnostic testing. Quantitative reverse transcription-polymerase chain reaction (q-RT-PCR) is the gold standard method for SARS-CoV-2 detections. On the other hand, new approaches remedy the diagnosis difficulties gradually. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) as one of these novel approaches may also contribute to faster and cheaper field-based testing. The present study was designed to evaluate this rapid screening diagnostic test that can give results in 30-45 min and to compare the effectiveness of LAMP to the q-RT-PCR. The 30 randomly chosen patient samples were generated by nasopharyngeal swabs with a portion of the SARS-CoV-2 nucleic sequence. The sample of quantification cycle (Cq) values was tested using RT-LAMP as well as by conventional q-RT-PCR. The patient samples were tested with four different kits (SENSObiz COVID-19 [SARS-CoV-2] LAMP Assay, the QIAseq DIRECT SARS-CoV-2 kit, Biospeedy SARS-CoV-2 Variant Plus kit, and CoVirion-CV19-2 SARS-CoV-2 OneStep RT-PCR kit) and two different PCR devices (GDS Rotor-Gene Q Thermocycler and Inovia Technologies GenX series). Based on 30 patient samples, the positive/negative ratio (P/N) was 30/0 as Biospeedy and Covirion (positivity 100%), 28/2 as Qiagen kit (positivity 93.3%) for the samples studied on the Inovia device while the same samples on the Rotor-Gene device were 30/0 as Biospeedy and Covirion (positivity 100%), 29/1 as Qiagen kit at the first day (96.7%). On the fifth day, the samples were studied in the Inovia device and the respective results were obtained: 27/3 as Biospeedy (positivity 90%), 16/14 as Qiagen (positivity 53.3%), 28/2 as Covirion kit (positivity 93.3%). When these samples were studied in the Rotor-Gene device, it was 29/1 in Biospeedy and Covirion (positivity 96.7%), 19/11 in the Qiagen kit (positivity 63.3%). When these samples were compared with the LAMP method it was found to be 19/11 (positivity 63.3%) on the first day and 18/12 (positivity 60%) on the fifth day. SARS-CoV-2 test studies will contribute to a proactive approach to the development of rapid diagnosis systems. The LAMP approach presents promising results to monitor exposed individuals and also improves screening efforts in potential ports of entry.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Clinical Laboratory Techniques/methods , Humans , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , RNA, Viral/genetics , Reverse Transcriptase Polymerase Chain Reaction , SARS-CoV-2/genetics , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL